FDA Express

FDA Express    Vol. 10, No. 1, Jan. 15, 2014

¡¡

Editors: http://em.hhu.edu.cn/fda/Editors.htm

Institute of Soft Matter Mechanics, Hohai University
For contribution: fdaexpress@163.com, pangguofei2008@126.com

For subscription: http://em.hhu.edu.cn/fda/subscription.htm

PDF Download: http://em.hhu.edu.cn/fda/Issues/FDA_Express_Vol10_No1_2014.pdf

¡¡

¡ô  Latest SCI Journal Papers on FDA

(Searched on 15th January 2014)

¡ô  Conferences

Fractional Derivatives and Their Applications Symposium at MESA 2014

7th Minisymposium ¡°Transform Methods and Special Functions¡± (TMSF '14)

¡ô  Books

Perspectives on Organisms: Biological time, Symmetries and Singularities

Environmental and Hydrological Systems Modelling

¡ô  Journals

Fractional Calculus and Applied Analysis

Central European Journal of Physics

¡ô  Paper Highlight

Analysis of four-parameter fractional derivative model of real solid materials

Fractional sequential mechanics-models with symmetric fractional derivative

¡ô  Websites of Interest

Fractional Calculus & Applied Analysis

International Conference on Fractional Differentiation and Its Applications (ICFDA'14)

¡¡

========================================================================

 Latest SCI Journal Papers on FDA

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

(Searched on 15th January 2014)

¡¡

ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS

By: Jarohs, Sven; Weth, Tobias

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS  Volume: 34   Issue: 6   Special Issue: SI   Pages: 2581-2615   Published: JUN 2014

Fractional diffusion-wave equations on finite interval by Laplace transform

By: Duan, Jun-Sheng; Fu, Shou-Zhong; Wang, Zhong

INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS  Volume: 25   Issue: 3   Pages: 220-229   Published: MAR 4 2014

Dimension of divergence sets for the pointwise convergence of the Schrodinger equation

By: Cho, Chu-Hee; Lee, Sanghyuk

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS  Volume: 411   Issue: 1   Pages: 254-260   Published: MAR 1 2014

Boundary problems for fractional differential equations

By: Jankowski, Tadeusz

APPLIED MATHEMATICS LETTERS  Volume: 28   Pages: 14-19   Published: FEB 2014

Fractional Order GN Model on Thermoelastic Interaction in an Infinite Fibre-Reinforced Anisotropic Plate Containing a Circular Hole

By: Abbas, Ibrahim A.

JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE  Volume: 11   Issue: 2   Pages: 380-384   Published: FEB 2014

¡¡

[Back]

==========================================================================

Conferences

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Fractional Derivatives and Their Applications Symposium at MESA 2014

Senigallia - Ancona, Italy, September 10-12, 2014

Objectives: The Symposium seeks papers solicited in the area of fractional derivatives and their applications. The subjects of the papers may include, but are not limited to:

• mathematical modeling of fractional dynamic systems
• analytical and numerical techniques to solve these equations
• fractional models of viscoelastic damping
• large scale finite element models of fractional systems and associated numerical schemes
• fractional controller design and system identification
• stability analysis of fractional systems
• nonlinear and stochastic fractional dynamic systems
• fractional models and their experimental verifications, and applications of fractional models to engineering systems in general and mechatronic embedded systems in particular
• fractional variational principles and its applications

Organizer¡¯s Contact Information:

Prof. Dumitru Baleanu
Dept. of Math. and Computer Science
Cankaya University, Turkey
dumitru@cankaya.edu.tr


Prof. J.A. Tenreiro Machado
Dept. of Electrical Engineering
Institute of Engineering of Polytechnic of Porto, Portugal
jtm@isep.ipp.pt
¡¡


Prof. YangQuan Chen
Mechatronics, Embedded Systems and Automation (MESA) Lab
University of California, Merced, USA
yqchen@ieee.org
¡¡


Prof. Jocelyn Sabatier
IMS/LAPS : Automatique, Productique, Signal et Image
Universit¨¦ Bordeaux1, France
jocelyn.sabatier@u-bordeaux1.fr
¡¡


Prof. Changpin Li
Department of Mathematics
Shanghai University, China
lcp@shu.edu.cn
¡¡


Prof. Blas M. Vinagre
Electrical Electronics & Automation Department
University of Extremadura, Spain
bvinagre@unex.es


IMPORTANT DATES
Submission of Full-Length Paper                       08-03-2014
Author Notification of Acceptance                    30-04-2014
Submission of Final Paper & Copyright Form   30-06-2014
Conference                                                      10-12 September 2014

¡¡

View http://www.mesa2014.org/it/symposia-mesa-8/ for more information.

¡¡

[Back]

¡¡

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

7th Minisymposium ¡°Transform Methods and Special Functions¡± (TMSF '14)

in frames of ¡°Mathematics Days in Sofia¡± (MDS 2014)

July 6 - 10, 2014, Sofia, Bulgaria

TentativeWebsite:  http://www.math.bas.bg/~tmsf/2014/

¡¡

MDS 2014: The Institute of Mathematics and Informatics (IMI) ¨C Bulgarian Academy of Sciences (BAS) will organize and host the international  conference ¡°Mathematics Days in Sofia¡±, with preliminary details available at  http://www.math.bas.bg/mds2014/ .

TMSF ¡¯14: In frames of this conference, we plan a ¡°Transform Methods and Special Functions¡± (TMSF) minisymposium, on occasion of 80th anniversary of Professor Ivan Dimovski (http://versita.com/people/dimovski/). This will be the 7th in the series of the international meetings TMSF organized periodically in Bulgaria: 1994 (Sofia), 1996 (Varna), 1999 (Blagoevgrad), 2003 (Borovets), 2010 (Sofia), 2011 (Sofia); see details at  http://www.math.bas.bg/~tmsf .

Traditional topics of the TMSF meetings: - Classical and Generalized Integral Transforms; - Fractional Calculus; - Fractional Differential and Integral Equations};-

Operational and Convolutional Calculus; - Special Functions, Classical Orthogonal Polynomials;- Geometric Function Theory, Functions of One Complex Variable;- Related Topics of Analysis, Differential Equations, Applications, etc.

More detailed information: will be coming soon.

Selected papers presented at this TMSF symposium will be considered for publication in the Springer-Versita journal ¡°Fractional Calculus and Applied Analysis¡± and other suitable journals.

¡¡

For contacts: Virginia Kiryakova, e-mail: tmsf@math.bas.bg , or virginia@diogenes.bg

¡¡

[Back]

¡¡

¡¡

¡¡

¡¡

==========================================================================

Books

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Perspectives on Organisms: Biological time, Symmetries and Singularities (Lecture Notes in Morphogenesis)

Giuseppe Longo , Maël Mont¨¦vil

Book Description

This authored monograph introduces a genuinely theoretical approach to biology. Starting point is the investigation of empirical biological scaling including their variability, which is found in the literature, e.g. allometric relationships, fractals, etc. The book then analyzes two different aspects of biological time: first, a supplementary temporal dimension to accommodate proper biological rhythms; secondly, the concepts of protension and retention as a means of local organization of time in living organisms. Moreover, the book investigates the role of symmetry in biology, in view of its ubiquitous importance in physics. In relation with the notion of extended critical transitions, the book proposes that organisms and their evolution can be characterized by continued symmetry changes, which accounts for the irreducibility of their historicity and variability. The authors also introduce the concept of anti-entropy as a measure for the potential of variability, being equally understood as alterations in symmetry. By this, the book provides a mathematical account of Gould's analysis of phenotypic complexity with respect to biological evolution. The target audience primarily comprises researchers interested in new theoretical approaches to biology, from physical, biological or philosophical backgrounds, but the book may also be beneficial for graduate students who want to enter this field.

More information on this book can be found by the following link:

http://www.springer.com/life+sciences/evolutionary+&+developmental+biology/book/978-3-642-35937-8

[Back]

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

¡¡

Environmental and Hydrological Systems Modelling

A W Jayawardena

Book Description

Mathematical modelling has become an indispensable tool for engineers, scientists, planners, decision makers and many other professionals to make predictions of future scenarios as well as real impending events. As the modelling approach and the model to be used are problem specific, no single model or approach can be used to solve all problems, and there are constraints in each situation. Modellers therefore need to have a choice when confronted with constraints such as lack of sufficient data, resources, expertise and time.

Environmental and Hydrological Systems Modelling provides the tools needed by presenting different approaches to modelling the water environment over a range of spatial and temporal scales. Their applications are shown with a series of case studies, taken mainly from the Asia-Pacific Region. Coverage includes:

This book will be of great value to advanced students, professionals, academics and researchers working in the water environment.

More information on this book can be found by the following link:

http://www.crcpress.com/product/isbn/9780415465328

¡¡

[Back]

========================================================================

 Journals

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Fractional Calculus and Applied Analysis

Volume 17, Issue 1

FCAA related news, events and books (FCAA-Volume 17-1-2014)

Virginia Kiryakova

The zeros of the solutions of the fractional oscillation equation

Jun-Sheng DuanZhong WangShou-Zhong Fu

Distributed coordination of fractional order multi-agent systems with communication delays

Hong-yong YangXun-lin ZhuKe-cai Cao

Analytic solutions of fractional integro-differential equations of Volterra type with variable coefficients

Živorad TomovskiRoberto Garra

On a class of nonlinear Volterra-Fredholm q-integral equations

Zeinab S. I. Mansour

Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives

Myong-Ha KimGuk-Chol RiHyong-Chol O

Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces

Tran Dinh KeDo Lan

Solutions to the fractional diffusion-wave equation in a wedge

Yuriy Povstenko

Robust stability bounds of uncertain fractional-order systems

YingDong MaJun-Guo LuWeiDong Chen

Boundedness of pseudo-differential operator associated with fractional Hankel transform

Akhilesh PrasadV. K. Singh

The space-fractional diffusion-advection equation: Analytical solutions and critical assessment of numerical solutions

Robin SternFrederic Effenberger

Thermal blow-up in a subdiffusive medium due to a nonlinear boundary flux

Colleen M. KirkW. Edward Olmstead

Fractional rheological models for thermomechanical systems. Dissipation and free energies

Mauro Fabrizio

Recent developments on stochastic heat equation with additive fractional-colored noise

Ciprian A. Tudor

Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism

Airat A. KhamzinRaoul R. Nigmatullin

L P -solutions for fractional integral equations

Sadia ArshadVasile LupulescuDonal O¡¯Regan

Remark to the paper of S. Samko, ¡°A note on Riesz fractional integrals in the limiting case ¦Á(x)p(x) ¡Ô n¡±, from FCAA, vol. 16, No 2, 2013

Stefan Samko

¡¡

[Back]

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Central European Journal of Physics

Volume 11, Issue 10

 (special issue: Fractional calculus: theory and numerical methods at http://link.springer.com/journal/11534/11/10)

Editorial

Fractional calculus: theory and numerical methods

Luis V¨¢zquez, Hossein Jafari Page 1163

¡¡

Review Article

On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence

Jordanka Paneva-Konovska Pages 1164-1177

¡¡

Reserach Articles

Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations

Yufeng Xu, Om P. Agrawal Pages 1178-1193

Vectorial fractional integral inequalities with convexity

George A. Anastassiou Pages 1194-1211

On the origin of space

Richard Herrmann Pages 1212-1220

Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term

Fawang Liu, Shiping Chen, Ian Turner, Kevin Burrage¡­ Pages 1221-1232

Linear discrete systems with memory: a generalization of the Langmuir model

Dumitru Băleanu, Raoul R. Nigmatullin Pages 1233-1237

Dynamical process of complex systems and fractional differential equations

Hiroaki Hara, Yoshiyasu Tamura Pages 1238-1245

A fractional approach to the Sturm-Liouville problem

Margarita Rivero, Juan J. Trujillo, M. Pilar Velasco Pages 1246-1254

Diffusion problems on fractional nonlocal media

Alberto Sapora, Pietro Cornetti, Alberto Carpinteri Pages 1255-1261

A discrete time method to the first variation of fractional order variational functionals

Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres Pages 1262-1267

Dynamics of a backlash chain

Jos¨¦ A. Tenreiro Machado Pages 1268-1274

A finite volume method for solving the two-sided time-space fractional advection-dispersion equation

Hala Hejazi, Timothy Moroney, Fawang Liu Pages 1275-1283

Fundamental solutions to time-fractional heat conduction equations in two joint half-lines

Yuriy Povstenko Pages 1284-1294

Fractional nonlinear systems with sequential operators

Dorota Mozyrska, Ewa Girejko, Małgorzata Wyrwas Pages 1295-1303

Exact solution for the fractional cable equation with nonlocal boundary conditions

Emilia G. Bazhlekova, Ivan H. Dimovski Pages 1304-1313

Riemann-Liouville and Caputo type multiple Erd¨¦lyi-Kober operators

Virginia Kiryakova, Yuri Luchko Pages 1314-1336

Singular fractional evolution differential equations

Mirjana Stojanovic Pages 1337-1349

An expansion formula for fractional derivatives of variable order

Teodor M. Atanackovic, Marko Janev, Stevan Pilipovic¡­ Pages 1350-1360

RLC electrical circuit of non-integer order

Francisco G¨®mez, Juan Rosales, Manuel Gu¨ªa Pages 1361-1365

Analysis on the time and frequency domain for the RC electric circuit of fractional order

Manule Gu¨ªa, Francisco G¨®mez, Juan Rosales Pages 1366-1371

Numerical solution of fractional differential equations by using fractional B-spline

Hossein Jafari, Chaudry M. Khalique¡­ Pages 1372-1376

Existence and approximation of solutions of fractional order iterative differential equations

JianHua Deng, JinRong Wang Pages 1377-1386

Two methods to solve a fractional single phase moving boundary problem

Xicheng Li, Shaowei Wang, Moli Zhao Pages 1387-1391

Variational iteration method ¡ª a promising technique for constructing equivalent integral equations of fractional order

Yi-Hong Wang, Guo-Cheng Wu, Dumitru Baleanu Pages 1392-1398

Nonlocal Cauchy problems for fractional order nonlinear differential systems

JinRong Wang, Xuezhu Li, Yong Zhou Pages 1399-1413

Fractional-order TV-L2 model for image denoising

Dali Chen, Shenshen Sun, Congrong Zhang¡­ Pages 1414-1422

Existence of positive solutions for nonlocal boundary value problem of fractional differential equation

Xiping Liu, Legang Lin, Haiqin Fang Pages 1423-1432

Numerical approach to the Caputo derivative of the unknown function

Fanhai Zeng, Changpin Li Pages 1433-1439

Finite difference scheme for the time-space fractional diffusion equations

Jianxiong Cao, Changpin Li Pages 1440-1456

On the generating function e xt+yϕ(t) and its fractional calculus

Alireza Ansari, Amirhossein Refahi Sheikhani¡­ Pages 1457-1462

Legendre multiwavelet collocation method for solving the linear fractional time delay systems

Sohrab Ali Yousefi, Ali Lotfi Pages 1463-1469

Numerical solution of fractional differential equations via a Volterra integral equation approach

Shahrokh Esmaeili, Mostafa Shamsi, Mehdi Dehghan Pages 1470-1481

Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation

Hossein Jafari, Haleh Tajadodi, Dumitru Baleanu¡­ Pages 1482-1486

Existence of solutions for sequential fractional differential equations with four-point nonlocal fractional integral boundary conditions

Bashir Ahmad, Ahmed Alsaedi, Hana Al-Hutami Pages 1487-1493

Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

Eid H. Doha, Ali H. Bhrawy, Samer S. Ezz-Eldien Pages 1494-1503

Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems

Mayank Srivastava, Saurabh K. Agrawal, Subir Das Pages 1504-1513

Dynamics analysis of fractional order Yu-Wang system

Sachin Bhalekar Pages 1514-1522

¡¡

Short Communications

Homotopy analysis method for solving Abel differential equation of fractional order

Hossein Jafari, Khosro Sayevand, Haleh Tajadodi¡­ Pages 1523-1527

Existence and uniqueness of a complex fractional system with delay

Rabha W. Ibrahim, Hamid A. Jalab Pages 1528-1535

¡¡

[Back]

========================================================================

 Paper Highlight
£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Analysis of four-parameter fractional derivative model of real solid materials

T. Pritz

¡¡

Publication information: T. Pritz. Analysis of four-parameter fractional derivative model of real solid materials. Journal of Sound and Vibration, 195(1), 1996, 103-115..   http://www.sciencedirect.com/science/article/pii/S0022460X9690406X

Abstract

The introduction of fractional derivatives into the constitutive equation of the differential operator type of linear solid materials has led to the development of the so-called fractional derivative models. One of these models, characterized by four parameters, has been found usable for describing the variation of dynamics elastic and damping properties in a wide frequency range, provided that there is only one loss peak. In this paper this four-parameter model is theoretically analyzed. The effect of the parameters on the frequency curves is demonstrated, and it is shown that there is a strict relation between the dispersion of the dynamic modulus, the loss peak and the slope of the frequency curves. The half-value bandwidth of the loss modulus frequency curve is investigated, and conditions are developed to establish the applicability of the model for a class of materials. Moreover, it is shown that the model can be used to predict the frequency dependences of dynamic properties for a wide range even if measurements are made in only a narrow frequency range around the loss peak.

[Back]

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Fractional sequential mechanics-models with symmetric fractional derivative

Małgorzata Klimek

¡¡

Publication information: Małgorzata Klimek, Fractional sequential mechanics-models with symmetric fractional derivative, Czechoslovak Journal of Physics, 2001, 51(12), 1348-1354.   http://link.springer.com/article/10.1023/A:1013378221617

Abstract

The symmetric fractional derivative is introduced and its properties are studied. The Euler-Lagrange equations for models depending on sequential derivatives of type are derived using minimal action principle. The Hamiltonian for such systems is introduced following methods of classical generalized mechanics and the Hamilton¡¯s equations are obtained. It is explicitly shown that models of fractional sequential mechanics are non-conservative. The limiting procedure recovers classical generalized mechanics of systems depending on higher order derivatives. The method is applied to fractional deformation of harmonic oscillator and to the case of classical frictional force proportional to velocity.

¡¡

[Back]

¡¡

==========================================================================

The End of This Issue

¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×

¡¡

¡¡