FDA Express

FDA Express    Vol. 13, No. 2, Oct. 30, 2014

¡¡

Editors: http://em.hhu.edu.cn/fda/Editors.htm

Institute of Soft Matter Mechanics, Hohai University
For contribution: fdaexpress@163.com, pangguofei2008@126.com

For subscription: http://em.hhu.edu.cn/fda/subscription.htm

PDF download:http://em.hhu.edu.cn/fda/Issues/FDA_Express_Vol13_No2_2014.pdf


¡¡

¡ô  Latest SCI Journal Papers on FDA

(Searched on 30th October 2014)

¡ô  Conference

The 2015 Symposium on Fractional Derivatives and Their Applications (FDTA¡¯15)

¡ô  Books

Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion

Electromagnetic Fields and Waves in Fractional Dimensional Space

¡ô  Journals

International Journal of Heat and Mass Transfer

Applied Mathematics Letters

¡ô  Paper Highlight

Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking

¡ô  Websites of Interest

Fractional Calculus & Applied Analysis

¡¡

¡¡

========================================================================

 Latest SCI Journal Papers on FDA

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

(Searched on 30th October 2014)

¡¡

¡¡

Asymptotic behavior of global solutions of an anomalous diffusion system

By: Hnaien, Dorsaf; Kellil, Ferdaous; Lassoued, Rafika

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS  Volume: 421   Issue: 2   Pages: 1519-1530   Published: JAN 15 2015

¡¡

Spectral results for mixed problems and fractional elliptic operators

By: Grubb, Gerd

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS  Volume: 421   Issue: 2   Pages: 1616-1634   Published: JAN 15 2015

¡¡

Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems

By: Gracia, J. L.; Stynes, M.

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS  Volume: 273   Pages: 103-115   Published: JAN 1 2015¡¢

¡¡

Mellin transform approach for the solution of coupled systems of fractional differential equations

By: Butera, Salvatore; Di Paola, Mario

COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION  Volume: 20   Issue: 1   Pages: 32-38   Published: JAN 2015

¡¡

Fractional calculus and fractional differential equations in nonreflexive Banach spaces

By: Agarwal, Ravi P.; Lupulescu, Vasile; O'Regan, Donal; et al.

COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION  Volume: 20   Issue: 1   Pages: 59-73   Published: JAN 2015

¡¡

A FINITE DIFFERENCE METHOD FOR PRICING EUROPEAN AND AMERICAN OPTIONS UNDER A GEOMETRIC LEVY PROCESS

By: Chen, Wen; Wang, Song

JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION  Volume: 11   Issue: 1   Pages: 241-264   Published: JAN 2015 

¡¡

[Back]

¡¡

==========================================================================

Conference

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

The 2015 Symposium on Fractional Derivatives and Their Applications (FDTA¡¯15)

as a part of the

The 2015 ASME/IEEE International Conference on Mechatronics and Embedded Systems and Applications (ASME/IEEE MESA2015)

August 2-5, 2015, Boston, MA, USA

http://iel.ucdavis.edu/mesa/conferences.php and http://www.asmeconferences.org/idetc2015/

http://mechatronics.ucmerced.edu/FDTA2015

FDTA (Symposium on Fractional Derivatives and Their Applications) was started by Prof. Om Agrawal and other FDTA colleagues in 2003 IDETC under the ASME DED VIB TC (Technical Committee), which meets on odd years under a DED TC. In 2007 and 2009, FDTA was under TC MSNDC. Starting from 2011, FDTA symposium is under MESA TC for better development of and better service to the FDTA community. ASME/IEEE MESA conference holds every odd year. Please note that ASME DED MESA TC also hosts conferences under IEEE/ASME in even years (e.g. 2010 in Qingdao, China, 2012 in Suzhou, China: and 2014 in Italy http://mesa2014.org) where FDTA symposia were also organized and papers were published in ieeeXplore.  

For 2015 FDTA Symposium under ASME/IEEE MESA15, papers are solicited in the area of fractional derivatives and their applications. The subjects of the papers may include, but are not limited to,

¡¤         mathematical modeling of fractional dynamic systems, analytical and numerical techniques to solve these equations, fractional model of viscoelastic damping,

¡¤         large scale finite element models of fractional systems and associated numerical scheme,

¡¤         fractional controller design and system identification,

¡¤         stability analysis of fractional systems, nonlinear and stochastic fractional dynamic systems,

¡¤         fractional order models and their experimental verifications, and applications of fractional models to engineering systems in general and mechatronic embedded systems in particular.

Papers with the e-mail addresses of the authors must be submitted online abstract(s) at http://www.asmeconferences.org/idetc2015/  by January 12, 2015. After the abstract submission, you MUST also submit a full length paper for peer review by Jan. 26, 2015. All manuscripts after a successful review procedure will be published in the conference proceedings. It will be EI indexed. For further information, please contact FDTA¡¯15 symposium organizers:

Professor Dumitru Baleanu

Dept. of Math. and Computer Science

Cankaya University

Ankara 06500, Turkey

Email:dumitru@cankaya.edu.tr

Professor J. A. Tenreiro Machado

Dept. of Electrical Engineering

ISEP-Institute of Engineering of Porto

4200-072 Porto, Portugal

Email: jtm@isep.ipp.pt

Professor YangQuan Chen

MESA LAB, School of Engineering,

University of California,

Merced, CA 95343, USA

E:yqchen@ieee.org;

W:mechatronics.ucmerced.edu

Dr. Jocelyn Sabatier

IMS/LAPS: Automatique,  Productique, Signal et Image, Universite Bordeaux1-ENSEIRB

UMR 5218 CNRS

Email: jocelyn.sabatier@u-bordeaux1.fr

Professor Changpin Li

Dept. of Mathematics

Shanghai University

Shanghai, China

Email: lcp@shu.edu.cn

Professor Blas M. Vinagre

Electrical Electronics & Automation Department, Unıversity of Extremadura,

Badajoz, SPAİN

Email: bvinagre@unex.es

 

FDTA Advisory Committee:

              Om P. Agrawal (USA), Chair

M. A. Duarte-Mermoud (Chile); A. Dzielinski (Poland); M. Edelman (USA); V. Feliu (Spain); R. Gorenflo (Germany); T. T. Hartley (USA); V. Kiryakova (Bulgaria); V. Lakshmikantham (USA); C. F. Lorenzo (USA); Y. Luchko (Germany);  F. Mainardi (Italy); R. Magin (USA); S. Manabe (Japan); S. Momani (Jordan); A. Mehaute (France); R. Nigmatullin (Russia); A. Oustaloup (France); M. Ortigueira (Portugal); K. Oldham (Canada); N. Shimizu (Japan); H. M. Srivastava (Canada); I. Podlubny (Slovakia); A. Nayfeh (USA)

 

FDTA Technical Committee:

       Yan Li (China), Chair

T. Atanackovic (Serbia)
R. Barbosa (Portugal)
G. W. Bohannan (USA)
R. Caponetto (Italy)

D. L. Chen (China)
W. Chen (China)
K. Diethelm (Germany)
S. Dormido (Spain)
R. El-Khazali (UAE)
A.M.A. El-Sayed (Egypt)
M. Enelund (Sweden)
N. J. Ford (UK)
A. Grau (Spain)

M. Haeri (Iran)
K. Hedrih (Serbia)
N. Heymans (Belgium)
R. Hilfer (Germany)
S. Kempfle (Germany)
M. Kirane (France)
M. Klimek (Poland)

P. Lanusse (France)

C. H. Kou (China)

F. W. Liu (Australia)

J. G. Lu (China)
R. Malti (France)

P. Melchior (France)
S. Muslih (Italy)
H. Ozaktas (Turkey)
E. Rabei (Jordan)
E. Scalas (Italy)
M. Shitikova (Russia)
D. Sierociuk (Poland)

F. A. Silva (Portugal)

D. Spasic (Serbia)
H. G. Sun (China)

W. Tan (China)
J. Trigeassou (France)
J. J. Trujillo (Spain)
L. Vazquez (Spain)
D. Y. Xue (China)

C. Yin (China)
D. S. Yin (China)

C. B. Zeng (China)
Y. Zhou (China)
K. Q. Zhu (China) 

 

FDTA Honors and Awards Committee Chair: Igor Podlubny (Slovakia)

FDTA Education and Outreach Committee Chair: Dingyu Xue (China)

FDTA Steering Committee Chair: YangQuan Chen (USA)

¡¡

[Back]

¡¡

¡¡

==========================================================================

Books

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion

Corinne Berzin, Alain Latour, Jos¨¦ R. Le¨®n

Book Description

This book is devoted to some stochastic models that present scale invariance.It is structured around three issues: probabilistic properties, statistical estimation and simulation of processes and estimators. The interested reader can be either a specialist of probability, who will find here a friendly presentation of statistics tools, or a statistician, who will have the occasion to tackle the most recent theories in probability in order to develop central limit theorems in this context. Both will certainly be interested in the last part on simulation, which, to my knowledge, is highly original. Algorithms are described in great detail, with concern of procedures that is not usually seen in mathematical treaties. The theoretical part is also partly original and finds its origin in previous work of the first and third authors, which they improve and extend here.

More information on this book can be found by the following link: http://link.springer.com/book/10.1007/978-3-319-07875-5

[Back]

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

¡¡

Electromagnetic Fields and Waves in Fractional Dimensional Space

Muhammad Zubair , Muhammad Junaid Mughal, Qaisar Abbas Naqvi

Book Description

In summary, the subject covered in this book is relatively new and emerging area of research in the field of electromagnetics. The concept of fractional dimensional space has potential to make a significant impact on future directions in fractional electromagnetics research. We highly recommend this book to graduate students, researchers, and professionals working in the areas of electromagnetic-wave propagation, radiation, scattering, diffraction, and other related fields of applied mathematics. The topics in this book can also be covered in any graduate course on ¡¯¡¯Advanced Engineering Electromagnetics¡¯¡¯.. ¡¡

More information on this book can be found by the following link: http://link.springer.com/book/10.1007/978-3-642-25358-4

¡¡

[Back]

¡¡

¡¡

========================================================================

 Journals

¡¡

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

International Journal of Heat and Mass Transfer

Volume 76, Pages 1-584 (Selected)

¡¡

Numerical simulation of the heat transfer from a heated plate with surface variations to an impinging jet

J. Ortega-Casanova, F.J. Granados-Ortiz

A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications

Li Chen, Qinjun Kang, Yutong Mu, Ya-Ling He, Wen-Quan Tao

Numerical investigation of curved channel Knudsen pump performance

D.M. Bond, V. Wheatley, M. Goldsworthy

Experimental investigation of heat transfer in a rotor¨Cstator cavity with cooling air inlet at low radius

X. Luo, L. Wang, X. Zhao, G. Xu, H. Wu

Hydrodynamic fine fragmentation of partly solidified melt droplets during a vapour explosion

Mitja Uršič, Matjaž Leskovar, Manfred B¨¹rger, Michael Buck

Heat transfer from a surface into a confined gap over a saturated porous plate

M. Khammar, D. Ewing, C.Y. Ching, J.S. Chang

On-line detecting heat source of a nonlinear heat conduction equation by a differential algebraic equation method

Chein-Shan Liu

Homotopy perturbation sumudu transform method for solving convective radial fins with temperature-dependent thermal conductivity of fractional order energy balance equation

A.     Patra, S. Saha Ray

Effect of memory accumulation in three-scale fractured-porous media

Mojdeh Rasoulzadeh, Mikhail Panfilov, Fikri Kuchuk

Time-resolved heat transfer characteristics for steady turbulent flow with step changing and periodically pulsating flow temperatures

Cun-liang Liu, Jens von Wolfersdorf, Ying-ni Zhai

A CHF model for saturated pool boiling on a heated surface with micro/nano-scale structures

Xiaojun Quan, Lining Dong, Ping Cheng

Transient fractional heat conduction with generalized Cattaneo model

Haitao Qi, Xinwei Guo

¡¡

[Back]

¡¡

£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Applied Mathematics Letters

Volume 36, Pages 1-46(selected)

¡¡

The existence and nonexistence of positive solutions to a discrete fractional boundary value problem with a parameter

Zhen-Lai Han, Yuan-Yuan Pan, Dian-Wu Yang

Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative

Qinghua Ma, Jinwei Wang, Rongnian Wang, Xiaohua Ke

Regularity criteria for the density-dependent Hall-magnetohydrodynamics

Jishan Fan, Tohru Ozawa

Almost automorphic solutions to a Beverton¨CHolt dynamic equation with survival rate

Toka Diagana

Existence of positive solutions for th-order -Laplacian singular sublinear boundary value problems

Zhongli Wei

Variational approach to impulsive evolution equations

Qing Tang, Juan J. Nieto

Oscillation of fourth order sub-linear differential equations

Miroslav Bartušek, Zuzana Došl¨¢

Sampling inequalities for infinitely smooth radial basis functions and its application to error estimates

Mun Bae Lee, Jungho Yoon

¡¡

[Back]

¡¡

¡¡

========================================================================

 Paper Highlight
£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­£­

Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking

Ralf Metzler, Jae-Hyung Jeon, Andrey G. Cherstvy and Eli Barkai

Publication information: Ralf Metzler, Jae-Hyung Jeon, Andrey G. Cherstvy and Eli Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 2014, 16, 24128.

http://pubs.rsc.org/en/content/articlelanding/2014/cp/c4cp03465a

¡¡

Abstract

Modern microscopic techniques following the stochastic motion of labelled tracer particles have uncovered significant deviations from the laws of Brownian motion in a variety of animate and inanimate systems. Such anomalous diffusion can have different physical origins, which can be identified from careful data analysis. In particular, single particle tracking provides the entire trajectory of the traced particle, which allows one to evaluate different observables to quantify the dynamics of the system under observation. We here provide an extensive overview over different popular anomalous diffusion models and their properties. We pay special attention to their ergodic properties, highlighting the fact that in several of these models the long time averaged mean squared displacement shows a distinct disparity to the regular, ensemble averaged mean squared displacement. In these cases, data obtained from time averages cannot be interpreted by the standard theoretical results for the ensemble averages. Here we therefore provide a comparison of the main properties of the time averaged mean squared displacement and its statistical behaviour in terms of the scatter of the amplitudes between the time averages obtained from different trajectories. We especially demonstrate how anomalous dynamics may be identified for systems, which, on first sight, appear to be Brownian. Moreover, we discuss the ergodicity breaking parameters for the different anomalous stochastic processes and showcase the physical origins for the various behaviours. This Perspective is intended as a guidebook for both experimentalists and theorists working on systems, which exhibit anomalous diffusion.

¡¡

¡¡

¡¡

[Back]

¡¡

¡¡

==========================================================================

The End of This Issue

¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×¡×

¡¡

¡¡